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SUMMARY 

Three-dimensional, compressible, internal flow solutions obtained using a thin-layer Navier-Stokes code are 
presented. The code, formulated by P.D. Thomas, is based on the Beam-Warming implicit factorization 
scheme; the boundary conditions also are formulated implicitly. Turbulent flow is treated through the use of 
the Baldwin-Lomax two-layer, algebraic eddy viscosity model. Steady-state solutions are obtained by solving 
numerically the time-dependent equations from given initial conditions until the time-dependent terms 
become negligible. The configuration considered is a rectangular cross-section, S-shaped centreline diffuser 
duct with an exit/inlet area ratio of 2.25. The Mach number at the duct entrance is 0.9, with a Reynolds 
number of 5.82 x lo5. Convergence to the final results required about 2700 time steps or 1 1  hours of 
CPU time on our CRAY-1M computer. The averaged residuals were reduced by about two orders of 
magnitude during the computations. Several regions of separated flow exist within the diffuser. The 
separated flow region on the upper wall, downstream of the second bend, is by far the largest and extends 
to the exit plane. 
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INTRODUCTON 

In the past decade numerous schemes have arisen for solving the Navier-Stokes equations or 
approximations to these equations. Most of these methods have been for external flows. For 
application to propulsive systems, however, internal and combination internal-external flows 
are of paramount importance but, so far, little work has been done in solving the Navier-Stokes 
equations for this class of problem.’ The work that has been done is mostly for simple duct 
geometries, and much of it has been for parabolized equations, thereby ruling out possibilities 
of flow separation.’ It is the purpose of this paper to examine the application of a ‘thin-layer’ 
approximated Navier-Stokes code to a complex three-dimensional internal flow-namely, an 
S-shaped, rectangular cross-section diffuser flow. The equations used in this code retain all terms 
important in boundary layers, both separated and attached, and the code should therefore be 
able to handle flow separation. 

DESCRIPTION OF CODE 

The Navier-Stokes code used in this work was formulated by P. D. It is based on the 
Beam-Warming6 implicit factorization scheme. The boundary conditions also are formulated in 
an implicit fashion consistent with the implicit difference equations for interior grid points. An 
elliptic grid generation technique is used to construct a boundary-conforming curvilinear co- 
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ordinate system. The co-ordinate grid has been suitably stretched near the solid boundaries where 
large gradients require more computational accuracy. Turbulent flow is treated through the use of 
a two-layer eddy viscosity model employing a simplified Baldwin-Lomax7 algebraic turbulence 
model. Steady-state solutions are obtained by solving numerically the time-dependent equations 
from given initial conditions until the time-dependent terms become negligible. Due to the implicit 
treatment of equations and boundary conditions, the code is unconditionally stable with respect to 
the time-step size. Both explicit smoothing terms and implicit artificial dissipation terms are 
included in the equations to improve the stability and convergence characteristics. The viscous 
transport processes in the streamwise direction have been neglected in the equations used in this 
code. However, the equations still retain all terms that are significant in boundary layers, whether 
attached or separated. 

DESCRIPTION OF DIFFUSER 

The configuration considered is a rectangular cross-section, S-shaped centreline diffuser duct. The 
side walls are parallel and 4 5  inches apart. At the entrance the height is 2 inches, while at the exit 
the height has increased to 4.5 inches. The area ratio of the diffuser is 2.25. Since the cross-sectional 
width is constant, this area ratio is accounted for entirely by the increase in the cross-sectional 
height; the exit cross-section is square. The centreline is formed from two tangential circular 
arcs; the radius of curvature of the upstream bend is 2.5 inches, while that of the downstream 
bend is 11.84 inches. The portion of the diffuser duct length having a curved centreline is 1088 
inches. Additional short lengths of 4.0 and 6.65 inches of constant cross-section are attached at 
the diffuser entrance and exit respectively to give an overall duct length of 21.53 inches; the 
total length measured along the centreline is 23.0 inches. 

BOUNDARY AND INITIAL CONDITIONS 

For the present diffuser duct flow, the stagnation enthalpy, the stagnation pressure and the 
direction cosines of the velocity vector are prescribed at the entrance, whereas at the perimeter of 
the exit the freestream pressure is specified. This latter condition is used in place of the energy 
equation. At the diffuser internal walls the velocity must vanish and the adiabatic wall condition is 
applied to the energy equation. Since the curvature of the diffuser centreline occurs in a vertical 
plane, there is a vertical plane of symmetry through the centreline of the diffuser and only one half 
of the diffuser duct cross-section need be considered in the computations. The initial (time = 0) flow 
consists of an inviscid core flow with a turbulent boundary layer flow at the walls. The Mach 
number at the duct entrance is 0.9, with a Reynolds number of 5.82 x lo5. 

RESULTS AND DISCUSSION 

The graphical results presented in Figures 1-7 are for the symmetry plane of the diffuser formed 
by the intersection of the diffuser with a vertical plane through the centreline. The co-ordinate grid 
in this symmetry plane is shown in Figure 1. The grid lines in computational space in the flow 
direction are identified by the index J ,  with J varying from 1 at the entrance plane to 46 at the exit 
plane. In the transverse planes (perpendicular to the centreline) the indices K and L are used to 
denote the computational space grid lines in the horizontal and vertical directions respectively. The 
variation of K is from 1 (symmetry plane) to 15 (side wall) and L varies from 1 (bottom wall) to 29 
(top wall). The centreline is located at K = 1 and L= 15, while K = 1 identifies the symmetry plane. 
The grid spacing is uniform in the flow direction except for the entrance region. Grid stretching 
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Figure 1. Computational grid in symmetry plane (vertical plane, K = 1, through the centreline) 

EI 

-1.0 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 

Figure 2. Longitudinal velocity profiles at various axial stations in symmetry plane 

was employed in the vertical and horizontal co-ordinate grids, with the grid spacing near the walls 
of the order of the viscous sublayer thickness. 

The velocity profiles at various axial stations are shown in Figure 2. The lengths of the arrows are 
proportional to the velocity magnitudes. The entrance flow is seen to be uniform except for the 
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boundary layer regions on the top and bottom walls. Downstream of the first bend on the lower 
wall and downstream of the second bend on the upper wall, separated flow zones exist. These 
can be easily identified by the reversed direction of the arrowheads. 

The extent of the separated flow regions can be examined much more conveniently in the 
U-contour plot in Figure 3. U is the horizontal component of longitudinal velocity, made 
dimensionless with the speed of sound at stagnation conditions. The outer boundaries of the 
separated flows are given by the contour lines for U = 0, while the other contour lines within 
the separated flow are for negative values of U.  The separated flow region on the upper wall is 
seen to be by far the larger, extending right to the exit plane. 

In Figure 4 the U-contours are plotted for the entire range of U ,  both positive and negative. The 
value of U is seen to attain a maximum near the lower wall at the second bend of the diffuser. The 
variation of U throughout the diffuser is quite smooth. 

Figure 5 shows the W-contours. W is the vertical component of the longitudinal velocity, made 
dimensionless with the speed of sound at stagnation conditions. The maximum value of W is seen 
to occur shortly downstream of the first bend in the diffuser. This is consistent with physical 
reasoning, since the angle from the horizontal of the diffuser centreline is a maximum in this region. 
As expected, there is little variation in W at the entrance and exit sections, since W at these points is 
near zero. 

Figure 6 depicts the variation in static pressure in the symmetry plane. The isobars indicate 
uniform entrance flow, but with considerable pressure disturbances in the vicinity of the channel 
bends. In the turning portions of the flow many of the isobars exhibit a partial alignment with the 
flow direction, as would be expected for a pressure field in approximate equilibrium with 
centrifugal forces. Towards the end of the second bend the flow straightens out and the exit flow is 
fairly uniform. This observation is consistent with the velocity profiles in Figure 2. 

The density contours in Figure 7 largely reflect the static pressure contours shown in Figure 6, 
because the temperature variations within the difffuser are relatively small. 

Figures 1-7 show flow conditions along a vertical plane through the centreline, but give no 
indication of how the flow properties vary laterally. To visualize lateral variations, we utilize cross- 
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Figure 4. U-contours (dimensionless) in symmetry plane 
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Figure 5. W-contours (dimensionless) in symmetry plane 
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Figure 6. Static pressure contours (dimensionless) in symmetry plane 
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Figure 7. Density contours (dimensionless) in symmetry plane 
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sectional plots which show the variation of flow properties in planes perpendicular to the channel 
centreline. 

The computational grid in such a transverse plane is shown in Figure 8. Since symmetry exists 
about a vertical plane through the centreline, only one half of the total cross-section is shown. The 
co-ordinate grids have been suitably stretched to provide fine spacing near the walls to resolve the 
turbulent boundary layer structure. 

The distribution of axial velocity U in two transverse planes is shown in Figures 9(a) and 9(b). 
Figure 9(a) is for an axial position just at the end of the second diffuser bend ( J  = 32), while 
Figure 9(b) is for the exit plane ( J  = 46). In both Figures 9(a) and 9(b) the contour lines for U = 0 
can be easily estimated-this is the boundary of the separated flow. The separated region is 
much larger for the upstream location of Figure 9(a). For both locations the separated regions 
are seen to extend across the entire width of the diffuser. In fact the axial flow appears to be 
almost two-dimensional over 75-80% of the cross-sectional width in both Figures 9(a) and 9(b). 

Figures 10(a) and 10(b) show the distribution of isobars (static pressure) over the same two 
cross-sectional planes considered in Figures 9(a) and 9(b), namely, the planes at J = 32 and 
J = 46 respectively. The pressure distribution in Figure lO(a) is typical of that which occurs when 
centrifugal forces are significant. The pressure field opposes and approximately balances the 
centrifugal forces in the interior region away from the diffuser walls. Near the walls, where the 
longitudinal velocity and hence the centrifugal force are less, the pressure field acts to return 
the secondary flow to satisfy continuity. For the cross-sectional plane at J = 46 (Figure 10(b)) 
there is no curvature of the duct in the main streamwise direction and therefore no centrifugal 
force. The static pressure field is now entirely different and the pressure is much more uniform 
over the cross-section, This greater uniformity can be seen from the fact that the values of the 

Figure 8. Computational grid in a transverse plane 
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Figure 9. U-contours (dimensionless) in transverse plane for J = 32,46 

isobars in Figure lO(a) vary from 0.165 to 0.305 while in Figure 10(b) the variation is only from 
0.386 to 0.403. The lack of smoothness of the contour lines in Figure 10(b) is probably caused 
by numerical error arising from the very small static pressure differences between successive 
contour lines. 

The stretched co-ordinate grid in the transverse plane, shown in Figure 8, is quite coarse in the 
interior region. The use of such a coarse grid is justified in part by the results shown in Figures 9 
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Figure 10. Static pressure contours (dimensionless) in transverse plane for J = 32,46 

and 10. In general the velocity and pressure variations exhibited in these figures are greatest near 
the walls. 

Secondary velocity vectors in two cross-sectional planes are shown in Figures 1 l(a) and 1 l(b). 
Again the two cross-sectional planes are located at J = 32 and at J = 46. A recirculating vortex- 
type flow can be seen near the top of the diffuser in Figure ll(a). Figure 3 indicates that this 
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Figure 11. Secondary velocity patterns in transverse plane for f = 32,46 

recirculation is occurring within a separated flow region. The secondary flow in the exit plane in 
Figure 1 l(b) is not of the recirculating type, but is mainly from the lower to the upper portion of the 
diffuser. This description is consistent with the exit plane velocity vectors shown in Figure 2. It is 
noteworthy that the magnitudes of the secondary flow velocities have not been reduced by the 
length of straight exit pipe as might have been expected, but have actually increased (compare 
Figures 1 l(a) and 1 l(b)). 

Convergence to our final results required about 2700 time steps or 1 1  hours of CPU time on our 
CRAY-1M computer. About 1.5 M byte central memory storage was needed out of the 2.0 M byte 
maximum in the CRAY-1M MOS memory. The front end of the system was an IBM 3091. The 
averaged residuals were reduced by about two orders of magnitude during the computations, as 
shown in Figure 12. 

One of the difficulties of using the present code is the need to assign a value to the exit pressure. A 
value of 0-4 for the exit static pressure divided by the entrance stagnation pressure was found 
to produce viable solutions. The estimate of 0.4 was obtained from empirical values for the total 
pressure loss through a diffuser and through the two turns of the offset diffuser. Using higher 
values of the exit pressure, e.g., 0.8 and 0.9, resulted in the entire flow degenerating to zero 
velocity near the diffuser exit. 

CONCLUDING REMARKS 

This paper indicates that the Thomas code yields useful results for one type of complex, subsonic, 
internal turbulent flow, even though appreciable separated flow is present. The graphical 
presentations of pressure and velocity results indicate that the centrifugal, viscous and pressure 
forces have produced a very complicated three-dimensional flow field. Analysis of the flow by 
conventional boundary layer techniques would probably be impossible. The computer time 
requirements of the present code are very large; however, this drawback may be eliminated if the 
code is vectorized. 
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Figure 12. Average residual versus number of time increments 

The large extent of one of the separated flow regions would suggest an examination of the validity 
of the Baldwin-Lomax turbulence model used in this code, but such an examination has not been 
done here. The turbulence model used here is of the simplest type, the zero equation or algebraic 
eddy viscosity model. Investigations of the appropriate turbulence models to be used in 
specific types of flows with flow separation, streamline curvature, rotation and/or shock 
interaction have recently been carried o ~ t . ~ , ~  Reference 9 concludes that, at  least for external 
flows, the algebraic turbulence model produces results inferior to those based on higher-order 
models. This conclusion was reached on the basis of a critical comparison of theoretical results 
with various experimental data. 
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